📊 Linear Algebra Calculator

Advanced matrix operations, eigenvalues, system solving, and decompositions

Matrix Operations

Matrix A

Matrix B

Matrix Operation Rules

Addition/Subtraction: Matrices must have the same dimensions. Multiplication: Number of columns in A must equal number of rows in B.

Determinant Calculator

Matrix

2×2: det(A) = ad - bc 3×3: det(A) = a₁₁(a₂₂a₃₃ - a₂₃a₃₂) - a₁₂(a₂₁a₃₃ - a₂₃a₃₁) + a₁₃(a₂₁a₃₂ - a₂₂a₃₁)

Eigenvalues & Eigenvectors

Square Matrix

Characteristic Polynomial: det(A - λI) = 0 For 2×2: λ² - tr(A)λ + det(A) = 0

Eigenvalue Properties

Sum of eigenvalues = trace(A). Product of eigenvalues = det(A). For symmetric matrices, all eigenvalues are real.

System of Linear Equations

Solution Methods

Gauss Elimination: Transform to row echelon form. Cramer's Rule: Use determinants (works when det(A) ≠ 0).

Matrix Decompositions

Matrix

LU: A = LU (L: lower triangular, U: upper triangular) QR: A = QR (Q: orthogonal, R: upper triangular) Spectral: A = PDP⁻¹ (P: eigenvectors, D: eigenvalues)